
Caronte: a complete methodology for the implementation
of partially dynamically self–reconfiguring systems on

FPGA platforms

Alberto Donato Fabrizio Ferrandi Massimo Redaelli
Marco D. Santambrogio Donatella Sciuto

Politecnico di Milano, {donato,ferrandi,redaelli,santambr,sciuto}@elet.polimi.it

It is common nowadays to employ fpgas, not only as a
means of rapidly prototyping and testing dedicated solu-
tions, but also as a platform on which to implement actual
production systems. The latter case comes in two flavors:
Compile Time Reconfigurable systems, in which the config-
uration of the fpga is done once and is never changed, or
Run Time Reconfigurable systems, where the configuration
of the chip is modified during the execution [6].

Although modern fpgas allow the designer to modify dy-
namically even only portions of the chip, to this date there
is a lack of satisfying design methodologies that using only
non–proprietary widely available tools make it possible to
optimally implement a high–level specification into a par-
tially dynamically reconfigurable system.

The aim of this work is to propose a methodology for solv-
ing this problem. The main features of the Caronte method-
ology [1, 2] (which targets a board equipped with a Xilinx
Virtex–ii Pro fpga with a Powerpc 405 processor) are: 1.
full exploitation of partial dynamic reconfiguration; 2. the
reconfiguration is internal (on the fpga a microprocessor
handles the reconfiguration through the icap module — thus
reducing the reconfiguration times; e.g. [4]); 3. a real–time
unix–like operating system helps the management of com-
plex systems with multiple tasks, and simplifies reconfigu-
ration through an optimized device driver.

The Hardware Architecture. Let us first describe the ar-
chitecture of the solution resulting from the Caronte Method-
ology.

In order to manage reconfiguration internally it is neces-
sary to always have a processing element running on the chip
that communicates with the icap port. This means that it
will be necessary to have a part of the fpga which always
remains the same during runtime (the fixed side, managing
reconfiguration) while the rest of the available area is free
for dynamic reconfiguration (the reconfigurable side).

The reconfigurable side can at any instant be viewed as
the collection of a certain number of independent function-
alities which are mapped on the chip as need be. Hence
the area of the reconfigurable part is divided in rectangular
boxes, all sharing a minimal interface that allows them to
interact with the rest of the system, such as the ibm Core-
Connect bus. These boxes are called BlackBoxes. Aside
from that, each BlackBox has also a processing layer part
which can be reconfigured to various tasks, always retaining
the communication functionalities offered by the communi-
cation layer. The bus macro technology is used to establish
unchanging routing channels between modules. From the

implementation point of view, this means that each Black-
Box is in fact an edk component made up of two vhdl, Ver-
ilog or edif files, the first one containing the architecture–
dependent logic interface and the second one the processing
element hardware description.

As for the fixed side is made up of six components: ICAP,
used to read/write a configuration from/to the bram; IP-
Core Manager (ipcm), a layer between the kernel of the
operating system the BlackBoxes; Memory, used to man-
age all the partial bitstream data information; Buses, used
to implement the architectural communication infrastruc-
ture (mainly with ibm CoreConnect technology); PPC405
Processor, used to provide the physical support for the
executable code (including reconfiguration control); Inter-
rupt Controller, used by the ppc405 processor and the
BlackBoxes to dialog with one another.

The starting point for our work has been the Board Sup-
port Package (bsp) supplied by the board producer, Avnet
Inc. The hardware support consists of a project to use with
Xilinx design tools, edk and ise, including most of the phys-
ical hardware components of the board, such as processor,
system buses (opb and plb), flash and ram memory, Ether-
net controller and serial port. The Avent bsp also contains
the Embedded Linux Development Kit (eldk), a package in-
cluding tools for cross–development such as the gcc compiler
for Powerpc and MicroBlaze architectures and the µClinux
kernel [5]. eldk can run on any Linux distribution on x86
machines. Both eldk and the kernel have been modified by
Avnet to include kernel support for specific hardware of the
board (Ethernet, flash, leds) and some scripts to download
the kernel image to the board using a network connection.

The Software Architecture. In order for the target sys-
tem to be responsive to external inputs or to allow the ex-
ecution of unbounded loops, it is necessary to run a con-
troller and a scheduler on board. In the Caronte Architec-
ture these processes are responsible for the correct execution
of the code and the (un)loading of the BlackBoxes, and are
represented by user processes of the operating system. The
scheduler is activated in two cases.

On one hand, the actual run–time can be greater than the
statically computed one. In this case the scheduler computes
a new schedule with a list–based approach, using estimates
on the new processing times and then finding a new critical
path.

On the other hand, every time a BlackBox ends its execu-
tion a reconfiguration is necessary. In this case the controller
starts to download the new configuration in the bram, af-



ter having informed all the BlackBoxes that can be affected
by the reconfiguration process (thus enabling their spooler
communication system). When the icap has finished re-
configuring the BlackBox, the controller re–enables normal
communication.

On top of this architecture runs a port of a real–time
gnu/Linux OS, µClinux [5], that allows the processes to
exploit advanced functionalities. Since the µClinux kernel
does not have any support for icap, we developed a Linux
kernel module implementing an icap driver. The icap mod-
ule at startup registers a character device major number and
reserves the memory–mapped address space corresponding
to the icap device (the base address can be specified as a
parameter when loading the module). At this point it is
possible to a create a device file, for example /dev/icap,
that processes can access to execute reconfiguration. Three
operations (besides open and close) are supported: write

stores a partial bitstream data in a buffer; read reads the
data in the buffer; ioctl allows 1. to discard the data in
the buffer, or 2. to start the reconfiguration process.

The module also creates a directory (/proc/icap) con-
taining files that give information about the driver status.
The directory contains three files: info (with info about the
linux device), status (reporting info from fpga flag regis-
ters), and device/ (a directory containing n files of the form
0, 1, . . . , each referring to an icap device and showing a
human–readable dump of info from the bitstream header, if
present).

To mimic in software the hardware architecture, the os ac-
cesses each BlackBox through a driver: the ip–core drivers,
which are standard driver modules. These drivers are au-
tomatically loaded and unloaded by another kernel module,
the ip–core Manager (ipcm), when the BlackBoxes are re-
configured. This is achieved by the controller sending an
interrupt request at every reconfiguration. The ipcm also
acts as an interface that all other user processes have to call
in order to access the functionalities of the ip–cores.

The modularity of the approach can be further underlined
since the ip–core drivers are developed hierarchically, using
stubs according to their general functionalities. For instance
there is a network interface stub, which is a specialization of
the generic stub, and so on.

The Methodology. We can only briefly hint at the Caronte
methodology here [1, 2]. It is composed of three phases.

In the Hardware Static System Photo Phase (hw–ssp) all
the needed (global) states of the fpga are computed as a
combination of the fixed part and a certain number of ip–
cores loaded in the BlackBoxes (each state is a “photo” of
the system). The input for this phase is a partitioned system
specification.

In the Design Phase all the information needed to com-
pute all the bitstreams to physically implement the embed-
ded reconfiguration of the fpga are collected. In this phase
the structure of each reconfigurable block is identified and
all the placement and communication problems are solved.

Lastly, the Bitstream Creation Phase creates the bitstreams
to be loaded on the fpga.

Test and results. The Caronte flow has been applied to
the aes (Rijndael) algorithm.

The idea (similarly to what was suggested in [3]) is to
iterate the execution of each BlackBox a certain number
of times, and in such a way to obtain blocks whose run-

ning time is comparable to the reconfiguration time of other
BlackBoxes, thus hiding reconfiguration overhead.

The Rijndael algorithm is a succession of 4 basic opera-
tions that are iterated many times. These operations are
performed on a 128 bit block, called state. After the sets
identification phase [1], it is possible to identify all the process-
ing elements and hence all the BlackBox cores — in the aes
case, the application is composed of two BlackBoxes, BB1

and BB2 (and of the fixed Caronte Core). Now we can de-
fine all the needed hw–ssps. In this case we obtain the four
different hw–ssp that are shown in Table 1.

Table 1. HW–SSP Description
hw–ssp Fix Module BB1 BB2

0 Empty Empty Empty
1 Caronte Core PE-A PE-B
2 Caronte Core PE-C PE-B
3 Caronte Core PE-C PE-D
4 Caronte Core PE-D PE-A

Figure 1 shows a sample execution of the aes algorithm
where the reconfiguration of a BlackBox has been hidden by
the execution of an already mapped one.

Figure 1: AES Caronte execution.

1. REFERENCES
[1] Marco D. Santambrogio. A methodology for dynamic

reconfigurability in embedded system design. Master’s
thesis, Politecnico di Milano, 2004.
http://www.micro.elet.polimi.it/people/santa.

[2] Fabrizio Ferrandi, Marco D. Santambrogio, and
Donatella Sciuto. A Design Methodology for Dynamic
Reconfiguration: The Caronte Architecture. In The
12th Reconfigurable Architectures Workshop (RAW
2005), 2005.

[3] R. Maestra, F.J. Kurdahi, M. Fernandez, R. Hermida,
N. Bagherzadeh, and H. Singh. A framework for
reconfigurable computing: Task scheduling and context
management. IEEE Transaction on Very Large Scale
Integration (VLSI) Systems, 9(6):858–873, December
2001.

[4] John Williams and Neil Bergmann. Embedded Linux as
a platform for dynamically self-reconfiguring
systems-on-chip. In Toomas P. Plaks, editor,
Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms.
CSREA Press, 2004.

[5] Arcturus Networks Inc. µclinux, Embedded
Linux/Microcontroller Project. In www.uclinux.org.

[6] S. Guccione and D.Levi. Run–time parameterizable
cores. pages 215–222. IEEE Symposium on Filed
Programmable Logic and Application, 1999.


