UNIVERSITY OF ILLINOIS AT CHICAGO - POLITECNICO DI MILANO
JOINT MASTER

High Performance Processors and System Project Report

"A\\\l

DIRESD

SPartA: a novel structural algorithm for Multi-FPGA
partitioning

Tutor: Marco Domenico Santambrogio

Project Author:
Alessandro Panella
UIC ID: 662147239
PdM ID: 708496

A.A. 2006-2007

& - E]T
DFPESD CONTENTS
Contents
1 Introduction 3
2 Problem definition 3
2.1 Partitioning in VLSI design 4
2.1.1 Structural level 0oL 4
2.1.2 Logiclevel D
3 Existing partitioning methods 5
3.1 Traditional methods 5
3.1.1 Kernighan-Lin graph bipartitioning heuristic D
3.1.2 Fiduccia-Mattheyses hypergraph bipartitioning heuristic 6
3.2 ITterative methods oo 7
3.2.1 Genetic and Tabu Search algorithms 7
3.2.2 Simulated Annealing algorithm 8
3.3 Multilevel methods oL 9
3.3.1 The Multilevel Partitioning Paradigm 9
3.3.2 Metis graph partitioning algorithm 9
3.4 Structural methods 11
3.4.1 Integration of HDL synthesis and partitioning 11
4 Going deeper into the problem 13
4.1 Two different multi-FPGA partitioning problems 13
4.1.1 Topology-aware partitioning 14
4.1.2 Topology-free partitioning 14
5 SPartA: the algorithm 15
5.1 The structural approach 16
5.2 How the algorithm works 17
5.3 Evaluationo 19
5.3.1 Evaluation metrics 20
5.3.2 Selecting first node for an empty partition 20
533 Results. 21
6 SPartA: the framework 24
7 Future work 25

é
S DK% KT
DFRESD 2 PROBLEM DEFINITION

1 Introduction

The design of multi-FPGA systems implies several phases, starting from
specification down to FPGA implementation. One of these phases is parti-
tioning, which is crucial to obtain good designs. This paper presents a novel
approach to the partitioning problem: SPartA (Structural Partitioning Al-
gorithm), which exploits the design hierarchy to obtain good performances
and build the basis of a future expansion toward dynamic reconfigurability.

In section 2 the partitioning problem is described both from a global and
a VLSI-oriented point of view. Section 3 deals with several different exist-
ing approaches. It starts from classic methods, such as Kernighan-Lin and
Fiduccia-Mattheyses heuristics, and proceeds with the description of some
iterative algorithms, namely Genetic, Tabu Search and Simulated Annealing.
Then, a powerful suite of multilevel algorithms called METIS is described.
Eventually a structural multi-FPGA partitioning approach is explained. Sec-
tion 4 presents two forms of multi-FPGA partitioning problem. In section
5 the proposed algorithm is explained in detail, through a description the
basic concepts, the pseudocode of the main procedures and some results.
Section 6 describes the SPartA framework, which provides the front-end and
the back-end of the core algorithm. The last section proposes some future
works.

2 Problem definition

The goal of partitioning is to divide a set of interrelated objects into a set of
subsets to optimize a specified objective. Partitioning is a general problem
which can be encountered in a large variety of contexts. This work focuses
on the partitioning of VLSI circuits, with particular attention on Multi-
FPGA systems. The most used structure on which partitioning is applied
is the graph, since it easily models almost all of the problems that require
a partitioning to be performed. A graph G is an ordered pair G:=(V, E),
where V is the set of wvertices, or nodes, and F is a set of pairs of distinct
vertices, called edges or arcs. Vertices and edges can have a (vector of) weight
associated with them.

The most general graph partitioning problem is the k-way partitioning,
defined as follows: given a graph G=(V, E) with V = n, partition V into
k subsets V1, Vs, ..., V) such that V; N V; = 0 for i # j and |J, Vi = V. A
balance constraint must usually hold; it can be expressed by the formula
|Vi| = n/k or, more precisely, | < |V;| < h,Vi = 1..k. Partitioning aims at
minimizing (or maximizing) one or more objective functions. The most used

é
S DK% KT
DFRESD 2 PROBLEM DEFINITION

cost function is the edge-cut - or cutsize - , which represents the number
of edges - or the sum of weights, if the graph is weighted - whose incident
vertices belong to different partitions.

The partitioning problem is known to be NP-complete. However, many
algorithms have been developed that find reasonably good partitionings.
Some of them are presented in section 3.

Some algorithms works with a structure that is a generalization of the
traditional graph, called hypergraph. A hypergraph is an ordered pair G =
(V, E"™), defined by a set of vertices V and a set of hyperedges E", where each
hyperedge is a subset of the vertex set V. The partitioning problem definition
for hypergraph is almost identical to the one explained above. Some methods
- e.g. k-means clustering - do not use graph or hypergraph. However, these
methods are not usually used in VLSI design, therefore they are not described
in this paper.

2.1 Partitioning in VLSI design

Partitioning is an usual issue in the design of hardware systems. To give
an example, it is a frequent situation that a logic circuit need to be splitted
into several parts or functional modules, thus enabling a better placing onto
a physical chip, e.g. a FPGA. Moreover, a partitioning algorithm could be
asked to take into account the constraints due to the limited resources of a
chip, making it harder to find a good solution. Effective circuit partition-
ing heuristics are becoming more crucial with the increasing complexity and
dimensions of VLSI designs. These trends make it necessary to partition
a design into smaller, more manageable components. In the field of Multi-
FPGA systems, it is straightforward that a partitioning stage is required in
order to partition the circuit into the different FPGA chips.

Aggiungi ’divide and conquer’, ’clustering/unclustering?’ - con cit. Bi-
partition.pdf

The differences among these few examples show that partitioning prob-
lems appear at different stages of VLSI design, and that the same problem
can be coped with at different levels. It is possible to roughly identify two
main levels of abstraction in VLSI design that, in turn, determine two ways
to cope with partitioning problems.

2.1.1 Structural level

As intended here, the structural representation of a system consists of the
modules that implement the functional units and the interconnections among

é
= G2 <‘3 N
B) \;&E’) 3 EXISTING PARTITIONING METHODS

them. The structure of the system is usually obtained through the synthesis
of a HDL description (e.g. VHDL or Verilog). It is roughly equivalent to
a RTL (Register Transfer Level) schematic. This structure can be also in-
terpreted in a hierarchical fashion: the root of a tree represents a top level
design, and its children are the first level modules (e.g. IP-Cores). These
modules are probably in turn composed by lower level components, and so
on. Going down in the hierarchy, the representation of the system becomes
finer grained.

In this structure, each module at each level can be represented by a
graph - or an hypergraph - and the partitioning methodology can exploit
the hierarchy. The main advantage of making a partitioning at this level
is that the representation of the system is still modular, thus making the
communication problems simpler.

2.1.2 Logic level

At this level, the circuit is represented by a netlist of logic gates (or, if the
target is a FPGA implementation, of CLBs) and can be naturally modeled
trough a hypergraph. Therefore, the circuit is represented at the finest grain,
making the partitioning more accurate. However, the number of nodes is very
high, and, since the loss of modularity, the communication among different
partitions is more problematic.

3 Existing partitioning methods

3.1 Traditional methods

Traditional approaches take into account the partitioning of a graph in two
parts (bipartitioning). This fact could represent a strict limitation, but actu-
ally these heuristics can be applied recursively in order to cope with a k-way
partitioning problem. One of the best known - and most widely extended
- graph bipartitioning approach is the Kernighan-Lin algorithm (KL). The
KL approach is the basis of another well known heuristic, called Fiduccia-
Mattheyses algorithm (FM), which has been developed in order to solve
hypergraph partitioning problems.

3.1.1 Kernighan-Lin graph bipartitioning heuristic

The KL algorithm ([1, 2]) is a heuristic that computes balanced bipartition-
ings of graphs, aiming to minimize the cutsize of the generated partitions.

= G2 <‘3 N
B) \;&E’) 3 EXISTING PARTITIONING METHODS

[\

It is an iterative-improvement algorithm, in that it begins with an initial
random partition and iteratively modifies it trying to improve the cutsize.

The KL algorithm is based on a 2-loop structure, and its pseudocode
is shown in 3.1. It works as follows: first, a pair of vertices belonging to
different partitions is chosen such that its swap gives the largest gain or the
smallest increase in cutsize. These vertices are then swapped and marked
as locked (i.e. they are not allowed to move again during that pass). At
this point the gain for each vertices pair needs to be updated. This process
continue until no unlocked pair of vertices exists. After that, the index of the
greatest partial sum above the performed swaps (i.e. the first & swaps that
give the maximum gain) is computed. If this maximum gain is greater than
zero, the correspondent swaps are actually executed, all the nodes return
to be unlocked, and a new iteration of the inner loop is performed. If the
maximum gain is less or equal than zero, the algorithm ends.

Algorithm 3.1: Pseudocode of Kernighan-Lin heuristic
Create initial partitioning;
while cutsize is reduced do
while While valid moves exist do
Find unlocked pair with vertices belonging to different partitions that
most improves/least degrades cutsize when swapped;
Swap the two nodes and mark them as ’locked’;
Update gain of nodes connected to moved nodes;
end while
Compute the largest partial sum and its index k;
Keep the first k pairs swapped, unswap others;
Unlock all nodes;
end while

The fact that also little worsening in cutsize are allowed in the inner loop
determines one of the most relevant features of this heuristic, that is the
ability to climb out of local minima. The complexity of this algorithm is

quite high, O(n?).

3.1.2 Fiduccia-Mattheyses hypergraph bipartitioning heuristic

The FM variation ([3, 2, 4]) of KL algorithm has been developed to cope
with hypergraphs. In FM algorithm the moves are not swaps of two vertices
but single-vertex moves with a balance constraint. A gain is associated with
each vertex in the hypergraph, corresponding to the sum of the different
gains associated with every adjacent hyperedge. For example, if a node v is
adjacent to net ¢ and it is the only vertex of ¢ belonging to a given partition,
moving it to the other partition decreases the cutsize by the weight of i (i.e.
the gain is equal to i’s weight). The sum of such gains (one for each adjacent

é
= G2 <‘3 N
B) \;&E’) 3 EXISTING PARTITIONING METHODS

hyperedge) gives the overall gain for vertex w.

The vertex with the largest gain is moved to the other partition if this
move does not violate a given balance constraint, and in that case the node
is marked as locked. As in KL heuristic, after a move is executed all affected
gains need to be updated. All other aspects of FM heuristic are substantially
the same as KL algorithm, and are not listed here.

3.2 Iterative methods
3.2.1 Genetic and Tabu Search algorithms

During the last years, several genetic algorithms (GAs) for partitioning have
been proposed. The solutions proposed in [5, 6] cope with multi-objective
partitioning problems. In particular, the proposed methodology tries to find
a good trade-off among cutsize, time delay, power consumption and good
balance. This trade-off is searched by the use of a fuzzy logic cost function
that takes into account all the mentioned objectives. Two algorithms have
been developed on the basis of this multi-objective approach.

The GA algorithm implements a traditional GA approach. It starts with
a set of initial solutions called population that is generated randomly. In each
generation (i.e. iteration), each individual chromosome in the population is
evaluated using a fitness function. Then, in the selection phase two of the
above chromosomes are selected from the population. The individuals hav-
ing higher fitness values are more likely to be selected. After that, different
operators act on the selected individuals in order to generate new individ-
uals called offsprings. This genetic operators are crossover (applied to two
individuals) and mutation (applied to a single individual). The ways these
operators are applied cause different trends in new generations: to give an
example, a strong application of mutation cause the offsprings to be more
memory-less but also increase the ability to climb local minima. In order to
evaluate the quality of an individual, the fuzzy logic cost is applied as the
fitness function.

The Tabu Search ('TS) approach starts from an initial feasible solution and
carries out its search by making a sequence of random moves or perturbations.
A Tabu list is maintained that stores the attributes of a number of previous
moves. In each iteration, a subset of neighbor solutions is generated and the
best move is is chosen, according to the fuzzy logic cost function, provided
it is not in the Tabu list. This prevents taking the search process back to
already visited solutions. However, the Tabu list can be overridden by the
aspiration criterion: if the found solution is the best seen so far, it is accepted
regardless of the Tabu list.

= G2 <‘3 N
B) \;&E’) 3 EXISTING PARTITIONING METHODS

[\

3.2.2 Simulated Annealing algorithm

Simulated annealing ([7, 8]) is an iterative algorithm that continuously up-
date a candidate solution until a stop condition is reached. The pseudocode
of the algorithm is the following:

Algorithm 3.2: Pseudocode for Simulated Annealing algorithm
T =T
CurrentGain = CalculateGain()
while t.,, > 0 do
AcceptMove = FALSE
for : =1do
randomly select vertex V to move from one partition to another
NewGain = CalculateGain()
if AcceptGainChange(AGain,T) then
CurrentGain = NewGain
AcceptMove = TRUE
else
return V to original partition
end if
end for
if AcceptMove then

tstop =ts

else

tstop =t
end if
T=Txa«
end while

A candidate solution is randomly generated, and the algorithm starts at
high temperature Ty. The gain is computed as follows:
_ cutsize
Gain A+ B]
where |A| and |B| are the number of vertices in partitions A and B, respec-
tively. M is the number of move states per iteration. When a random vertex
is selected for moving from its original partition to another, the move is ac-
cepted according to the following rule. If a move will result in an unbalanced
partition, it is always rejected. If the balance is preserved and the resulting
solution is improved, the move is accepted. Otherwise, the move is randomly
accepted with probability e~ S After each iteration, 7T is scaled by a
cooling factor o, where 0 < o < 1. The algorithm stops if there have been
no changes after t, iterations.

The probability of accepting a worsening move decreases with the number
of the current iteration. Therefore, at the beginning worsening moves are
more likely to be accepted, and the solution evolves in a more confused

é
= G2 <‘3 N
B) \;&E’) 3 EXISTING PARTITIONING METHODS

fashion. Later, when T decreases, the probability to accept these moves is
lower, and the solution evolves with smaller changes. This process is similar
to the electrons energy jumps in a hot metal that undergoes a cooling process
(annealing), from which this algorithm takes its name. The possibility to
accept worsening moves provides again hill-climbing ability in the early stage
of the process.

3.3 Multilevel methods
3.3.1 The Multilevel Partitioning Paradigm

The multilevel partitioning ([9, 10, 11]) was successfully introduced in the
mid 1990s, and represents the best known partitioning methodology for large
graphs or hypergraphs.

The main idea behind multilevel partitioning is the repeated reduction
of instance size via clustering. Note that clustering is used in this context
with a different meaning than partitioning. The original problem instance is
reduced by constructing a clustering and then collapsing each cluster into a
new vertex. This process is repeated until the size of the instance is suitable
for applying an efficient and effective partitioning algorithm. Once an initial
partitioning solution is computed on the smallest graph, it is projected to
the upper levels and it is iteratively refined. The two phase are called, re-
spectively, coarsening and refinement (or uncoarsening). These phases are
depicted in figure 3.3.1

3.3.2 Metis graph partitioning algorithm

Karypis and Kumar introduced in [10] a class of efficient multilevel partition-
ing algorithm called Metis. These algorithms compute a k-way partitioning
of a graph G = (V, E) in O(|E|) time. As said before, a multilevel parti-
tioning algorithm is composed of three sequential phases: coarsening phase,
wnitial partitioning phase and uncoarsening phase. The description of each
phase is provided in the following.

Coarsening Phase During this phase, a sequence of smaller graphs G; =
(V;, E;) is constructed from the original graph Gy = (Vp, Ep) such that |V;| <
|Vi—1|. In order for a partitioning of a coarser graph to be good with respect
to the original graph, the weight of a vertex must be equal to the sum of
weight of the vertices of the original graph that were collapsed to form it.
Also, the edges of the new vertex are the union of the vertices that were
collapsed. This rules ensure two important properties: (i) the cutsize of a

g &
B) :&ES 3 EXISTING PARTITIONING METHODS

J

N
—_/
N

N/

g I;"II / - \\ _/L ;_- \ g

£ | a) oy %

> ’ KHE_ (z T ‘ 8

g | ad |'| e

g | - _—~ [3
\ ———— k)l _Z'___‘HI , /

B R
G, (‘_3:?

Initial Partitioning Phase

Figure 1: Various phases of a multilevel partitioning algorithm (from [10]).

given partitioning in a coarser graph is equal to the cutsize in the finer graph
and (ii) a balanced partitioning of the coarser graph results in a balanced
partitioning of the finer graph. This edge method can be formally defined
in terms of matchings. A matching is a set of edges, no two of which are
incident on the same vertex. The coarser graph is constructed by collapsing
couple of matching nodes of the original graph. The unmatched vertices are
simply copied. Since the goal is to minimize the size of the graph, a maximal
matching should be found at each level. A matching is said to be mazimal if
it is not possible to add any edge without violate the matching condition. In
[10] are described three ways to obtain maximal matchings, namely Random
Matching, Heavy Edge Matching and Modified Heavy Edge Matching, listed
here by increasing goodness of the result but also of execution time.

Initial Partitioning Phase This phase aims at computing a k-way parti-
tioning of the coarsest graph such that each partition contains roughly |V;|/k
vertex weight of the original graph. Two ways are described to produce such
initial partitioning. The first is to keep coarsening the graph until it has only
k vertices left, but it rises two problems. First, the reduction in graph’s size
becomes very small after some coarsening steps, making it too expensive to
continue with the coarsening process. Second, the weight of the obtained
vertices are likely to be quite different, making the initial partitioning highly

10

é
= G2 <‘3 N
B) \;&E’) 3 EXISTING PARTITIONING METHODS

unbalanced. Another way is to use a multilevel bisection algorithm, which
produces good initial partitionings and requires small amount of time.

Uncoarsening Phase During this phase, the partitioning of the coarsest
graph is projected back to the original graph, by going through all the in-
termediate graphs. it is important to note that, even if the partitioning of
a coarser graph is at a local minimum, its projection to the finer graph may
not be at a local minimum, since it has more degree of freedom. Hence, it
may be possible to improve the projected partitioning at each level. Tradi-
tional KL and FM heuristics tends to produce very good results when used as
refinement algorithm. Unfortunately, they produce only bipartitionig, while
refining a k-way partitioning is significantly more complicated. However,
two variations of FM algorithm that solve k-way partitioning problems have
been developed. They are Greedy Refinement, which is very efficient but
almost lacks any capabilities of climbing out of local minima, and Global
Kernighan-Lin Refinement, that adds some hill-climbing abilities to the for-
mer algorithm.

3.4 Structural methods

The expression structural methods includes that partitioning algorithms that
do not only works on a large, flattened netlists (hypergraphs), but take into
account the hierarchical structure of the design. This structure is usually
extracted from the HDL description of the system, and provides useful infor-
mation for the partitioning process.

3.4.1 Integration of HDL synthesis and partitioning

In [12, 13] a new workflow for multi-FPGA design is introduced that inte-
grates HDL synthesis and partitioning. This flow is composed by two main
phases: (1) fine grained synthesis and functional-based clustering and (2) hi-
erarchical set-covering partitioning. These steps are here described in detail.

Fine grained synthesis and functional-based clustering The process
begins by parsing a Verilog description of the design. The synthesis aims at
the creation of a three-level structural tree. The root node represents the
top-level of the design. The HDL description is analyzed in order to find the
modules that compose the design and their interconnections. The root node
of the tree has one child for each module. A module is composed by a set of
concurrent processes. Every process is a child of a module. In order to obtain
clusters with a finer granularity, the process level circuit is decomposed into

11

g &
B) :&ES 3 EXISTING PARTITIONING METHODS

i1 1213
Process {P1} \BA F) e1)

input [0:3] i1,i2; {P1}

outout [03] o1 4ﬁ i D) (@ @eEnEEeEr) (0
1

output 02; n
B} e2cimse,] M ® @230 ®
0

1 02
(a) (b) (c) (d)

Figure 2: A process example: (a) the Verilog description, (b) the correspond-
ing structure, (c) the structural level, (d) bit-level decomposition (from [13]).

f1.21 122

Figure 3: An example of structural tree (from [13]).

smaller clusters. A process consists of a set of statements having a set of
input and output signals, so that the synthesis framework generates a logic
function for each output. Furthermore, it is possible to decompose multibit
logic functions into a set of single bit logic functions, thus achieving a finer
granularity of functional clusters. An example of functional clustering of a
process is depicted in figure 3.4.1.

The result of this phase is the creation of a hierarchical tree as shown in
figure 5.3.3.

Hierarchical set-covering partitioning In this phase a hierarchical con-
nected graph is constructed from the structural tree by mapping each single
component at each level of the hierarchy. Then, a set-covering partitioning
algorithm is applied. The main objective of the algorithm is to minimize the
number of FPGAs (covering sets) used. The amount of logic that can be
added to a covering set is limited by the number of available CLBs and 1/0
pins. The basic idea is to start the set-covering procedure from the highest

12

‘é
(= G2 <‘3 N
D) :&E@) 4 GOING DEEPER INTO THE PROBLEM

level nodes (i.e. module nodes). If no more feasible covers can be found
at the higher level, the process continues on the nodes at lower granularity,
that have more possibilities to grant CLB and IO pins constraints. If the
constraints are not violated for a component (at any level), it is added to the
covering set. If this operation is impossible also at the lowest level of the hy-
erarchy, a new covering set is created. An example of set covering is depicted
in figure 3.4.1. The algorithm ends when all nodes have benn covered. The
algorithm execution requires O(n?) time.

—~

“ o e
’f1,1,1\£o'

i _ L P13
N g

Figure 4: An FPGA covering example (from [13]).

4 Going deeper into the problem

Partitioning problems can be found in several engineering fields, therefore
there is the need to circumscribe our partitioning problem. The field of in-
terest is VLSI design partitioning. In particular, the goal is to provide a
good partitioning algorithm for multi-FPGA design. The first version of the
algorithm will cope with static multi-FPGA designs, while in a second mo-
ment a more complex algorithm will be developed, that copes with dynamic
reconfigurable systems.

The next section describes two problems that can be coped with in this
scenario.

4.1 Two different multi-FPGA partitioning problems

The Multi-FPGA partitioning problem can be seen from two different points
of view, with different goals. In one case, the actual topology of the FPGA

13

= G2 <‘3 N
B) :&E’) 4 GOING DEEPER INTO THE PROBLEM

[\

network is entirely provided, while in the other case the topology is not given
a-priori. In the following, both cases are analyzed individually.

As it will be clear later, in our case the system to be partitioned is represented by a
structural tree of the design hierarchy. The tree can be easily converted into a hierarchical
connected graph. This structure is a generalization of a graph, but for the remainder of
this section there are no differences between dealing with graphs or hierarchical graphs.
Therefore, for the sake of simplicity and clarity, the following concepts will be treated

using graph structures.

4.1.1 Topology-aware partitioning

As said above, in this case the topology of the FPGA network is received
as an input by the partitioning algorithm, together with the HDL system
description.

It is possible to see this problem as a matching between the graph repre-
senting the modules of the system to be implemented (i.e. the system graph)
and the one representing the topology of the multi-FPGA architecture (i.e.
the architecture graph). The former graph is generally much larger than the
latter, so that a partitioning is required. Since the topology of the archi-
tecture is fixed, this form of the problem is subject to a large number of
constraints that originate from the architectural description. On the other
hand, it is obvious that there is no need to minimize the number of FPGA
chips (i.e. the number of partitions) because it is imposed by the topology.
Anyway, a good exploitation of the area can lead to efficient solutions.

The presence of pre-routed wires among partitions implies more con-
straints to be respected. Moreover, the algorithm must take into account
the eventual presence of communication units to be implemented over some
FPGAs, in order to permit the communication between two chips that are
not directly connected.

This kind of problem do not always have a possible solution. As a matter
of fact, if the dimension of the system is larger than the sum of FPGA areas,
the solution is trivially impossible to be found. In that case two ways can be
followed: either the designer has the possibility to use a larger multi-FPGA
architecture, either dynamic reconfigurability can be considered to solve this
space-constrained problem.

4.1.2 Topology-free partitioning

The absence of a given topology implies more degrees of freedom in the design
of a Multi-FPGA system. This results in a lower number of constraints

14

—)) C’ N
DFRESD 5 SPARTA: THE ALGORITHM

[\

to be fulfilled, but also increases the number of tasks that the algorithm
has to perform. Actually, the algorithm however needs some architectural
informations of a single FPGA node. In particular, it needs the dimension of
the used FPGA chip and the number of the maximum incoming and outgoing
connections (i.e. fan-in and fan-out). On the basis of these information the
procedure aims at minimizing the number of FPGA chips been used while
keeping an acceptable communication throughput among the nodes.

Since the number of partitions needs to be minimized, this can be seen
as a particular instance of the set covering problem. As a matter of fact, in
such a problem the number of covering sets used to cover the graph has to
be minimized. In this case, while attempting at minimizing the number of
partitions, there is also the need to keep the communication volume lower
than some limitations imposed by node’s architecture. In order to provide a
better solution, the quantity of communication can be considered as a second
objective, thus resulting in a multi-objective partitioning problem.

More precisely, this approach can be described as follows. There are two
inputs for the algorithm: the system to be partitioned and the description
of the FPGA nodes to be used. This description basically consists of the
dimension of the FPGA chip and the maximum number of incoming and
outgoing connections (i.e. fan-in and fan-out) and the type of communica-
tion implemented (e.g. direct pin connection, shared-wire connection, ...).
Therefore, the algorithm has to perform a mapping between the functional
modules of the system graph and a library of FPGA nodes. This implies
that it must also carry out some kind of place-and route tasks, in order to
select the best connections among the FPGAs.

5 SPartA: the algorithm

The algorithm that is being developed deals with the second type of problem,
i.e. it is topology-free. Moreover, it has been assumed that!:

1. the communication between two FPGAs is carried out by a common
link with communication logic on both sides. It means that it is not a
pin-to-pin connection, and therefore the FPGA’s pin number does not
represent a constraint;

2. the FPGAs communication logic can manage an infinite number of
connections.

!These assumptions reflect the features of the architecture that is being developed in
the other currently active branch of the project, that deals with the creation of a physical
multi-FPGA platform using Xilinz Spartan-8 FPGAs.

15

2
p) RES' 5 SPARTA: THE ALGORITHM

Before starting with the description of the algorithm, it is useful to point
out what are the main objectives the algorithm tries to minimize. There are
two cost functions: the amount of communication among different FPGA
chips and the number of FPGA chips. The algorithm tries to minimize both
objectives in a heuristic and greedy fashion.

One of the main feature of the proposed algorithm is the hierarchical
nature of the structure on which it works. This characteristic is described in
the following subsection.

5.1 The structural approach

As described in section 3, in [12, 13] the authors propose a new approach
to multi-FPGA partitioning. The idea is to consider the modular structure
of the HDL input design, and exploit the design hierarchy to carry out the
partitioning. The methodology works on Verilog system descriptions, that
are synthesized in order to produce a three-level - modules, processes and
functions - design hierarchy. This tree is then interpreted as a hierarchical
connected graph (as shown in figure 5.1), and a set covering algorithm is
applied on this three-level hierarchy. The algorithm works on the basis of a
score function, which is the linear combination of two elements: the amount
of communication between the considered node and the current covering set
and the ratio between the number of CLB and I/O pins of the considered
node. Two parameters allow to tune these two cost functions. The node
with the highest score is considered for being added to the current covering
partition.

P1 Al 0
'\é"@s
\lf N

\ | \) F"] 2
AR e
ima @5 ') (P22) (Pa1) lPS" ﬂﬁ‘\pg M?/

|) 6
[\ P22 \ / roccess "
Andn [}j XD\[: -(@ i g/

121 122 Funct|on

Figure 5: Example of: (a) hierarchical tree and (b) hierarchical connected
graph (from [13]).

Maintaining information about design modules and hierarchy entails some

16

—)) C’ N
DFRESD 5 SPARTA: THE ALGORITHM

[\

important benefits. First, modules must not be broken up into a large set of
basic logic elements, but can be treated as single blocks at the highest levels
of the hierarchy. This implies less work to be done in order to carry out the
partitioning: as a matter of fact, the possibility of adding a given module
as a whole to a partition allows to avoid further partitioning activities in
the lower levels of the design hierarchy. Moreover, carrying out partitioning
considering modules is a good choice for the algorithm objectives as well, such
as minimizing the amount of communication among partitions. This fact
derives from a simple observation: in a modular design, modules represent
work units, that means that the logic components inside them work in a
strictly correlated way and therefore there is a lot of communication inside
modules. Conversely, communication between different modules is somehow
lower. In other words, usually intra-module communication is higher than
inter-module communication. Therefore, the task of minimizing the amount
of inter-chip communication has already be partially done by the designer
when creating the HDL modular description, and the algorithm can exploit
these important information. Another important advantage of dealing with
modules during partitioning is that it provides a suitable base for further
development of the algorithm toward multi-FPGA dynamic reconfiguration,
which is the overall goal of the DReAMS project.

The basic idea of exploiting the design hierarchy has been inherited for
the development of a new partitioning algorithm, called SPartA (Structural
Partitioning Algorithm), as explained in the next subsection.

5.2 How the algorithm works

The algorithm deals with a hierarchical tree structure. The depth of the
tree is not fixed a priori, as it results from the synthesis of a VHDL design
(see section 6). Therefore the algorithm is required to behave dynamically
with respect to the unknown number of hierarchy levels. This results in a
procedure that calls itself recursively while going down through the hierarchy.

At a given moment during the execution of the algorithm a node in the
tree can be in one of three different states: uncovered, partially covered and
covered. 1t is partially covered when some of its children are partially covered
or only some of them are covered. The algorithm stops when the node TOP,
which represent the node at the top level of the hierarchy (i.e. the whole
design) is covered.

Before describing the algorithm, an important precondition must be pre-
sented. In order to be able to carry out the partitioning, the algorithm
requires that no leaf greater than the FPGA capacity is present in the tree.

17

é
S [HH2 KD
DFRESD 5 SPARTA: THE ALGORITHM

Otherwise, the algorithm is not able to partition the design.

Algorithm 5.1 lists the procedure cover(set C, int MAXCLB) which is the
main part of the heuristic. It receives as input a set of nodes C'; MAXCLB
is a macro that represents the area of the used FPGAs. The algorithm is
started by invoking cover({TOP}).

Algorithm 5.1: Procedure cover(set C)

1. S C,

2. while S # () do

3. if curpar # () then

4. cur « uncovered sibling in C having the highest amount

of communication with nodes in partition curpar;

5 else

6. cur = selectFirstNodeO f Partition();

7. end if

8 S — S\ {cur};

9. if d(cur) < MAXCLB — d(curpar) then

10. curpar — curpar U {cur};

11. setStateCovered(cur);

12. end if

13. end while
14. if top is covered then

15. stop;

16. else

17. Q@ < set of the uncovered or partially covered siblings of cur;
18. if @ =0 then

19. cover(TOP);

20. return;

21. end if

22. S « set of the uncovered or partially covered children

of the node in @ having the highest amount
of communication with nodes in partition curpar;

23. if S =0 then

24. curpar — newPartition();
25. cover(TOP);

26. else

27. cover(S);

28. end if

29. end if

Algorithm 5.2: Procedure setStateCovered(node cur)

1. cur.state — COVERED;

if All other cur’s siblings are COVERED AND cur # TOP then
setStateCovered(cur.parent)

else
Set all ancestors to PARTIALLY COVERED:;
Set all descendant nodes’ status to COVERED;

end if

N oo e wN

18

— BY| F) <‘3 ~
DFRESD 5 SPARTA: THE ALGORITHM

[\

First, the algorithm tries to add to the current partition the node in C
having the highest communication with nodes in the current partition. If
this partition is still empty, the node is selected using the function select-
FirstNodeOfPartition. The pseudocode of this function is not shown, mainly
because the choice of the first node to be put in an empty partition is still
being investigating. In section 5.3 three different policies to select the node
are described and compared.

If the node does not fit into the FPGA chip, the algorithm tries to add the
second node having highest communication with nodes in current partition
(or a node selected on the basis of a certain policy, if the current partition is
empty) and so on, until all nodes in C have been checked out. During this
process, if a node fits into the current partition, it is added and procedure
setStateCovered(node cur) is invoked. This procedure - listed in Algorithm
5.2 - checks whether the node is the last one to be added to a partition among
its siblings. In that case its parent’s status needs to be set to covered as well,
in a recursive fashion. When an end is reached (i.e. the current parent node
is only partially covered) the node’s status is set to COVERED while its
ancestors’ one is set to PARTIALLY COVERED, and all the descendant of
the node are set to COVERED.

At this point the stop condition is checked and, if it is not satisfied, the
algorithm proceeds creating a set of uncovered or partially covered siblings
of the current node. If this set is empty, it means that all siblings has been
covered? and procedure cover is recursively called. If the created set is not
empty, another ser is created: the children of the node having the highest
amount of communication with nodes in current partition. If this set is
empty, it means that the algorithm has reached a leaf node that does not
fit into the current partition. In this case the algorithm, instead of trying
to add to the partition some children of another node, prefers to restart the
procedure with a new current partition®. If the children set is not empty, the
procedure is recursively invoked with this set as actual parameter.

5.3 Evaluation

The algorithm has been successfully implemented using C++-, and some tests
has already been performed. Since the framework which the algorithm is

2Pay attention to the fact that this does not imply that the tree has been totally
covered, since the parent of these siblings can be different from TOP

3This is a first definition of the algorithm, and it is possible that, on the basis of some
tests, some aspects will be modified.

19

é
S [HH2 KD
DFRESD 5 SPARTA: THE ALGORITHM

part of (see section 6) has not yet been developed, a random tree generator
(Treegen) has been implemented. Treegen is able to create random structural
trees and generate a random amount of communication between nodes. The
generated tree are coherent, meaning that the sum of the sizes of the children
of a given node is equal to the size of the node itself. This fact is the result
of a simple assumption: the sparse logic (i.e. communication logic) that can
be present at a given level of the tree has been considered as embedded with
nodes or - with the same effect - as a node itself.

The real partitioning algorithm (SPartA) takes as input two files: one
describing the structure of the tree and one describing the communication
between nodes. These two files must obviously be compatible, in the sense
that the communication - described as weighted node pairs - must fit on the
tree. The program returns two files:

e a description of the partitions and the evaluation metrics (paragraph
5.3.1), and

e a dot file for drawing the partitions.

5.3.1 Evaluation metrics

To evaluate the goodness of a design three metrics are considered. They are:

1. CUTSIZE (or EDGECUT): it is the overall sum of weights of connec-
tions between nodes in different partitions;

2. FILLING: it is the average percentage of occupied space in every par-
tition;

3. SPLITS: it is the amount of splits that have been performed to create
partitions. In other words it indicates how many times a module has
been decomposed into submodules to fill FPGAs. This metric has been
considered because, as said in section 5.1, keeping module’s integrity is
a good thing.

5.3.2 Selecting first node for an empty partition

The policy adopted for selecting the first node to be put in an empty par-
tition surely affects the quality of the partitioning. It is still an open issue,
in the sense that a satisfying policies exploration has not yet been carried
out. However, three methods have already been developed, implemented and
tested. They are described in the following.

20

? [\‘\’9\ C’)
DFESD 5 SPARTA: THE ALGORITHM

e OPTION 0: a raandom node is selected from the considered set (S in
algorithm 5.1);

e OPTION 1: the uncovered node belonging to the considered set having
the highest overall communication is selected;

e OPTION 2: the uncovered node belonging to the considered set (S in
algorithm 5.1) having the highest communication with nodes in S is
selected;

The performances of these three different policies have been compared and
the results are shown in the next subsection.

5.3.3 Results

In order to provide an idea of what the algorithm produces, the result of a
partitioning is shown in figures 5.3.3 and 5.3.3. The first figure represents the
original tree as generated by Treegen. The second figure depicts the result of
the partitioning using OPTION 0 policy. Note that the children of nodes in
partition are not showed since they do not provide further information and
in that way the figure is more readable.

o e

Figure 6: Example: original tree.

The three different policies to select the first node to be added to an
empty partition have been tested through the use of 18 randomly generated
trees having varying dimensions, partitioned using varying FPGAs sizes. The
results are shown in figures 5.3.3, 5.3.3, 5.3.3. One important drawback of

21

[\

[\\’9\ C’)
DFESD 5 SPARTA: THE ALGORITHM

partition 3

partition 2

Sicte

Figure 7: Example: partitioned tree.

the greediness of the algorithm is that the last considered partition is usually
highly unbalanced, meaning that it contains an amount of logic depending
mainly on the overall dimension of the design and the size of the used FPGAs.
This issue will be addressed in the future work (see section 7). For this reason,
the last partition is not considered in computing the FILLING metric.

From the figures it can be evinced that no method provides drastically
better performances. In particular, for what concerns EDGECUT metric,
the results are almost the same for the three policies. Considering FILLING,
it can be noticed that OPTION 0 first node selection method often provides
a slightly better result. Only the SPLITS metric graph shows a pretty re-
markable result: the random method (OPTION 0) produces better results
for large designs.

Notice that the average FILLING is very high: this means that FPGAs
area is almost all used, thus preventing space wasting. This in turn implies an
optimized number of FPGA used. Another result is that often only a single
node is splitted several times. This means that that algorithm implicitly try

to preserve module integrity, by using ’pieces’ of already broken modules to
fill unused FPGA areas.

The complexity of the algorithm is exponential, due both to the visible
recursion of cover (see algorithm 5.1) and implicit recursions of subroutines
needed by the implementation. However, the algorithm has been tested with

22

[\

/7[0
0
©

5 SPARTA: THE ALGORITHM

Edgecut

Filling %

1400

EDGECUT EVALUATION

1300

1200
1100

1000

900

-/I-

800

700

N\, OPTO

N\, OPT1

0oPT2

1,000000
0,900000
0,800000
0,700000
0,600000
0,500000
0,400000
0,300000
0,200000
0,100000
0,000000

ex ex ex ex ex ex ex ex ex ex
9 10 11 12 13 14 15 16 17 18

Dummy designs

--dglg_

Figure 8: Test: EDGECUT evaluation.

FILLING EVALUATION

NS SN A
S " AR

\, OPTO
N\ OPT1
OPT2

T T T T T T T T T T T T T T T T 1
BX &X BX eX eX eX eX eX eX eX eX ex ex ex ex ex ex ex
12 3 4 5 6 7 8 9 10111213 14 15 16 17 18

Dummy designs

Figure 9: Test: FILLING evaluation.

graphs that could represent quite large designs: the execution time was surely
acceptable (few tens of seconds).

23

[\
©)
5
0
o)

6 SPARTA: THE FRAMEWORK

- SPLITS EVALUATION

60 //
55 /"“w
20 /

45

40 I/ —

g 35 /r'-""\ l //

5 ~—— =
gg . A L~ N OPT2
- BN LT~
10-pA ﬁ/

5 -
O T T T T T T T T T T T T T T T T 1

eX ex ex eX ex eXx ex eX ex ex ex ex ex ex ex ex ex ex
12 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18

Dummy designs

Figure 10: Test: SPLITS evaluation.

6 SPartA: the framework

In this paper a novel partitioning algorithm has been presented. However,
this algorithm is thought as the core functionality of a larger framework,
which embeds the real partitioning phase into a wider process. The overall
framework provides the front-end and the back-end for the algorithm.

Generally, an algorithm takes some data as inputs ad produces some
outputs. In our case, the input of the partitioning algorithm is represented
by a hierarchical design that has to be provided in a simple textual format.
The output consists of a data structure containing the information about the
partitioning. This implies - as said - that the algorithm needs to be contained
into a huger component. That component must be able to read the design
given by the user and produce a suitable - possibly sinthetizable - output.
The SPartA framework is the solution to this problem.

The framework takes as input a VHDL description of the system to be
partitioned and, with the help of existing synthesis tools, produces a struc-
tural design description that can be handled by the partitioning algorithm.
After that, the algorithm processes the data structure and provides the par-
titioning information. The output of the algorithm is then re-converted into
VHDL files. Every file corresponds to a single partition (i.e. FPGA). The
flow of the SPartA framework is depicted in figure 6.

At the moment, only the SPartA core algorithm has been implemented.
The rest of the framework is one of the main future goals (see section 7).

24

— BY| F) (3 ~
D QE@ 7 FUTURE WORK

[\

DESIGN
EXTRACTION

PARTITIONING

'

VHDL FILES
BUILDING

!

- % - i AN

Figure 11: The SPartA framework.

7 Future work

The future work of this project includes both algorithm improvements and
extensions. For what concerns improvements, several points of weakness
have been highlighted in the document. The balancing of the last partition
is one of the main problem that can be addressed. Moreover, the space of
methods for the selection of the first node in an empty partition is far from
being exhaustively explored. Another improvement will concern the general
node selection policy, that is: what node has to be considered for being
added to a partition (in the case it is not empty)? Actually, the node with
the highest communication is taken into account. Probably a more refined
score function which considers more factors could provide better results. In
particular, closeness metrics will be considered for node’s selection. That
score function could also assume a parametric nature, allowing the designer
to stress a particular objective rather than another one.

For what concerns algorithm expansions, the most effort will be addressed
to the development of the SPartA framework, described in section 6. An-
other expansion concerns topology-aware partitioning, that is the form of the
problem explained in section 4 that has not been yet taken into account.

25

é
S [HH2 KD
p) QE@ REFERENCES

References

1]

B. W. Kernighan, S. Lin, “An efficient heuristic procedure for partition-
ing of electrical circuits,” Bell Systems Technical Journal, vol. 49, no. 2,
pp- 291-307, February 1970.

S. Hauck, “Multi-fpga systems,” Ph.D. dissertation, University of Wash-
ington, 1995.

C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for im-
proving network partitions,” in DAC '82: Proceedings of the 19th confer-
ence on Design automation. Piscataway, NJ, USA: IEEE Press, 1982,
pp. 175-181.

D. A. Papa and I. L. Markov, “Hypergraph partitioning and cluster-
ing,” in Approximation Algorithms and Metaheuristics, T. Gonzales, Ed.

CRC Press, 2006.
S. M. Sait, A. H. El-Maleh, and R. H. Al-Abaji, “General iterative

heuristics for vlsi multiobjective partitioning,” in Circuits and Systems,
2003. ISCAS ’03. Proceedings of the 2003 International Symposium on,
2003, pp. 497-500.

——, “Evolutionary algorithms for vlsi multi-objective netlist partition-
ing,” Engineering applications of artificial intelligence, vol. 19, no. 3,
pp. 257268, April 2006.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by sim-
ulated annealing,” Science, Number 4598, 13 May 1983, vol. 220, 4598,
pp. 671-680, 1983.

T. W. Manikas and J. T. Cain, “Genetic algorithms vs. simulated an-
nealing: A comparison of approaches for solving the circuit partition-
ing problem,” Department of Electrical Engineering, The University of
Pittsburgh, Tech. Rep. 101, May 1996.

C. J. Alpert, J.-H. Juang, and A. B. Kahng, “Multilevel circuit parti-
tioning,” in DAC, 1997, pp. 530-533.

G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for ir-
regular graphs,” Journal of Parallel and Distributed Computing, vol. 48,
pp. 96-129, 1998.

——, “Multilevel k-way hypergraph partitioning,” in DAC| 1999, pp.
343-348.

26

é
S [HH2 KD
p) QE@ REFERENCES

[12] W.-J. Fang and A. C. H. Wu, “Integrating hdl synthesis and partitioning
for multi-fpga designs,” IFEFE Des. Test, vol. 15, no. 2, pp. 65-72, 1998.

[13] W.-J. Fang and A. C.-H. Wu, “Multiway fpga partitioning by fully ex-
ploiting design hierarchy,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 5, no. 1, pp. 34-50, 2000.

27

