Dynamic Reconfiguration: Core Relocation via Partial
Bitstreams Filtering with Minimal Overhead

Fabrizio Ferrandi
DEI - Politecnico di Milano
e-mail: ferrandi@elet.polimi.it

Marco Novati
DEI - Politecnico di Milano

e-mail: marco.novati@microlab-mi.net

Massimo Morandi
DEI - Politecnico di Milano

e-mail: massimo.morandi@microlab-mi.net

Marco D. Santambrogio
DEI - Politecnico di Milano
e-mail: marco.santambrogio@polimi.it

Donatella Sciuto
DEI - Politecnico di Milano
e-mail: sciuto@elet.polimi.it

ABSTRACT

Partial reconfiguration is a relatively new feature of FPGAs
and it allows the modification of hardware functionalities at
runtime, providing the possibility for great improvements
in the concept of reconfigurable computing. However, this
new approach also creates some problems in the implemen-
tation phase of modules and in their placement. By restrict-
ing the form of single functions to arrays of whole columns
communicating on a single horizontal bus, the problem can
be significantly simplified. Column-wise partial reconfigura-
tion can be realized by means of a space allocation manager
that determines the columns where single modules should
be placed and a component which modifies the bitstream to
place it in the correct position. This paper describes the de-
velopment of such component in the form of the Bitstream
Relocation Filter, BiRF, that allows the relocation of a par-
tial bitstream with minimal overhead during the download
process. The proposed solution is thought starting from the
REPLICA filter, trying to adapt it to work within the fixed
side of the Caronte architecture.

1. INTRODUCTION

One of the most important problems in current comput-
ing is the continuous search for the best compromise between
flexibility and performance: generally every step in the di-
rection of versatility tends to be a step back in terms of
efficiency and vice-versa. A possible solution to this prob-
lem is offered by Field Programmable Gate Arrays, from
now on FPGAs. FPGAs allow the creation of reconfigurable
systems [1], which can be considered a good compromise be-
tween special purpose hardware - like Application Specific
Integrated Circuits (ASICs) - and general purpose comput-
ers. This paper presents a space allocation manager that de-
termines the columns where single modules should be placed
on the physical device. This component is used to modifie
at runtime the partial reconfiguration bitstream to place it
in the correct position.

This paper is organized as follow. Section 2 describes the
concept of FPGA reconfiguraton with a focus on its dynamic
version [1,2] along with the problems it creates in the de-
sign of a system and the solutions developed to solve them,
again focusing on a specific approach: bitstream relocation.

All the work presented in this paper is based on the Xilinx
Virtex series FPGAs [3] whose features are described in sec-
tion 3. This section explains the structure and use of Xilinx
Virtex FPGAs, configuration bitstreams and configuration
registers. The Bitstream Relocation Filter is inspired on the
REPLICA filter, as proposed in [4], whose basic assumptions
and ideas are described in Section 2. Section 4 presents the
development and implementation process of the BiRF filter,
with a description of the whole system and an explanation
of all its components. Finally in Section 6 the synthesis
results of the filter are shown with possible extensions and
improvements of the work in the future.

2. STATE OF THE ART

The main feature of a reconfigurable system is the possi-
bility to change repeatedly its configuration; on these sys-
tems, functions can be implemented as independent hard-
ware modules which can be downloaded on the chip only
when needed, replacing other modules. This approach has
two main advantages: in terms of versatility, a reconfig-
urable system is more flexible than an Application Specific
Integrated Circuit, while in terms of performance it gen-
erally offers better latency and smaller area requirements
than a general purpose computer. Unfortunately, reconfig-
urable systems also have a major drawback in the high time
overhead caused by the reconfiguration process itself; the
creation and download of a whole configuration bitstream
on the FPGA is a time consuming operation, and doing it
repeatedly causes unacceptable waste of computing time. A
possible solution to such a problem is bitstream compression:
reducing the amount of data before the download helps min-
imizing the time overhead but, with this method, the board
still has to be wholly reconfigured every time a new function
is needed, which is the main drawback.

A significant improvement can be obtained introducing
the partial reconfiguration [2], a feature provided by sys-
tems like the FPGAs of the Xilinx Virtex Series [5], which
represents a great step forward in the field of reconfigurable
systems; partial reconfiguration means that the FPGA does
not need to be always completely rewritten but can be mod-
ified only when and where needed and, most of all, while the
rest of the system keeps working. This is a particularly pow-

erful approach because, usually only a small portion of the
total FPGA has to be changed, possibly a single function,
and reconfiguration time is directly tied to the size of the
reconfiguration bitstream. Partial reconfiguration presents
also a second problem in the pre-synthesis phase: if the con-
figuration has to change dynamically, the actual position of
modules cannot be known during the implementation pro-
cess; however, each pre-synthesized module bitstream can
only be implemented in a fixed location.

The bitstream relocation problem can be solved in two
ways: by restricting the possible positions where a module
can be placed, that implies the fact that all the allowed bit-
streams for every function have to be created in advance,
or by creating the bitstreams for each different module in
a fixed arbitrary position and relocating them afterwards.
Relocation is the approach which will be further discussed
in this paper. Two existing solutions based on the said ap-
proach are the PARBIT tool [6] and the REPLICA filter [4].
The former is a software solution which can relocate any part
of a complete bitstream in an arbitrary position, a powerful
tool that, unfortunately, suffers from excessive reconfigu-
ration overhead due to its nature; it has to be run on an
external computer, so the bitstream must be relocated on
the computer and only after the relocation process it can be
downloaded on board. The filter proposed in [4], instead,
is an hardware solution, created with the goal of limiting
and, possibly eliminating, the computational overhead by
performing relocation during the normal download process;
this approach eliminates the need for an external computer
to perform relocation by means of a filter implemented on
a board interposed between the computer which manages
reconfiguration and the target FPGA. The REPLICA solu-
tion offers great improvements in terms of time overhead,
and it basically eliminates them by taking advantage of the
inevitable latency, caused by data transfer, and using that
time to perform its manipulations on the bitstream word by
word as they get transferred on the board.

3. XILINX VIRTEX ARCHITECTURE

Virtex FPGAs [3] are composed of several parts: Config-
urable Logic Blocks (CLBs), Input Output Blocks (IOBs),
Ram Blocks and a set of configurable resources for inter-
connection between different blocks. Virtex devices can be
configured through SelectMAP interface, master/slave se-
rial interface and Boundary-Scan interface. SelectMAP is
a 8-bit interface which allows to write eight bits of con-
figuration bitstream per clock cycle; Virtex devices can be
configured to retain the Select MAP pins, allowing further re-
configuration via those pins or, if further re-configuration is
not required, those pins can be configured as user 1/0. With
master /slave serial or Boundary Scan interface, only one bit
of configuration bitstream per clock cycle can be written.
Configuration data can be read using the Select MAP inter-
face or the Boundary Scan interface, while the master/slave
serial interface can be only used to write.

3.1 Memory Configuration

The Virtex configuration memory is a rectangular array
of bits, grouped into vertical frames that are one-bit wide
and extend from the top of the array to the bottom. Frames
are grouped together into larger units called columns. Each
device contains one central column that configures the four
global clock pins. Two IOB columns represent configuration

for all of the IOBs on the left and right edges of the device.
The main part of the device is made of CLB columns which
contain CLBs in the middle and an IOB on each of the edges.
The remaining column type is used for the RAM Block and
it is divided in two parts; the first used for the content and
the second one used for the interconnections.

3.2 The Structure of a Configuration Bitstream

A bitstream is a binary file that contains all the device
data configuration, which is uploaded through one of the
available interfaces. A bitstream is composed of a series of
configuration commands and configuration data, organized
in 32-bit words. The main commands which can be found in
a bitstream are read and write commands that are executed
when found in, or stored into, a configuration register. A
command is organized as a packet with a header word fol-
lowed by options and/or data words. An Header word con-
tains: a type field, an operator field, a register-address field
and a word-count field, as described in details in [3].

3.3 Configuration Registers

Configuration logic is manipulated via a series of con-
figuration registers, used to store each command or data
word. Two of these configuration registers contain com-
mands which are involved in the bitstream relocation pro-
cess: the FAR and the CRC. The FAR register contains the
address of the current frame in the FPGA which is com-
posed of three parts: block type, major address and minor
address. Block type discriminates between CLB and RAM,
major address identifies the column in the addressing space,
minor address indicates a specific frame in the column. The
integrity of configuration data is granted by Cyclic Redun-
dancy Checks (CRC) that must be executed before the de-
vice initialization. When a data is written to any configura-
tion register except LOUT, a CRC value is computed using
the register data and address bits. CRC check is done af-
ter a writing in the CRC register, comparing the computed
value with the one that is stored in the register. If the two
values are different, the device is put in an error state.

4. THE BIRF HW CORE

The work further discussed in this paper could be com-
pared with the REPLICA filter, [4]; both these works are
based on the same assumptions but the BiRF implementa-
tion is able to guarantee better performance both consider-
ing the occupation requirements on the interposed FPGA,
and the throughput gained by its hardware implementa-
tion introduced into the fixed part of the Caronte architec-
ture, [1,2]. In this section, the basic concepts and assump-
tions of our approach are discussed, and they are followed, in
Section 5, by a brief description of the implementation. Par-
tial reconfiguration, while providing great improvements in
terms of reconfiguration time, also causes some problems in
reconfiguration management; the main of these problems is
tied to the placement of functions [7] on the FPGA. Choos-
ing an optimal - or at least good - position where to place
a module is not a simple task, considering that a module
can normally have arbitrary size, form and communication
lines; therefore some limitations have to be introduced in the
pre-synthesis phase to reduce the complexity of the problem.

4.1 Column-wise Approach

A possible solution is provided by the Xilinx Virtex series
FPGAs [3], we have chosen to use this device in order to be
able to plug the proposed filter into a real reconfigurable ar-
chitecture such the one proposed in [1]. Those FPGAs allow
reconfiguration of single columns, which means every mod-
ule has to be extended on the whole board vertically, but can
be arbitrarily wide horizontally; a compromise that allows
to manage the reconfiguration in a one-dimensional way in
opposition to the two-dimensional - and therefore more com-
plex - generic approach [8]. With this limitation, also the
problems tied to the interaction between distinct modules
can be solved easily with the definition of a fixed horizontal
communication infrastructure that spans the whole FPGA;
in this way, communication of every module can be guaran-
teed even during reconfiguration.

As previously described, partial reconfiguration could im-
ply that the position of modules is not known during the
implementation process and thus the final bitstreams can-
not be created in advance; each pre-synthetized module bit-
stream can only be implemented in a single array of columns,
but there is no guarantee that the module will be needed in
that specific position, and, therefore, some column-wise bit-
stream remapping has to be done.

5. BIRF IMPLEMENTATION

BiRF (Bitstream Relocation Filter) allows the relocation
of a partial bitstream with minimal overhead during the
download process; it consists of two components that per-
form the necessary manipulations on the bitstream and a fi-
nite state machine which controls the data multiplexer to se-
lect the correct output between the two blocks and the input.
The BiRF solution is thought starting from the REPLICA
filter, trying to adapt it to work with the Caronte archi-
tecture, [1,9], and due to its little occupancy, as shown in
Section 6, inserting it into the Caronte fixed side. The main
inputs of the filter are: the configuration bitstream - in the
form of a sequence of 32-bit words -, the encoded FPGA pa-
rameters, and the CLB column to which the bitstream has
to be moved. The main output of the filter is the manip-
ulated bitstream, which is generated out of the input bit-
stream and without any delay (input data is replaced only
if necessary), an example of the reconfiguration via BiRF is
shown in Figure 1.

All functional blocks will be briefly introduced in the fol-
lowing paragraphs.

5.1 The BiRF Parser

The core of the BiRF filter is the parser; its objective
is to identify the FAR (Frame Address Register) and CRC
(Cyclic Redundancy Check) commands in the bitstream, in
order to allow the modification of the values that follow them
by controlling the multiplexer.

These two commands are the only ones which have to be
edited when performing relocation; so, when any other com-
mand or padding is recognized, the parser simply feeds the
input through the output. Therefore, a finite state machine
has been created to distinguish pad words from commands,
and then between different commands. If the current word
is the CRC or the FAR command, the parser activates the
correct line of the multiplexer feeding through output the
next word - or words - which contains the new CRC or FAR
calculated by the other two blocks. As the BiRF changes a
part of the bitstream values after their generation, specifi-

FPGA

. I] || Fixed Side:

H IP-FC10re_ IP-Core(] IP-'%ore H PPC

H 1 2 | 1cAP

- " u 1 BiRF
FPGA I

= H i || Fixed Side:
[|IP-Core||IP-Core|| IP-Core || PPC
= F2 i F1 H F3 H ICAP
H | 1 H BiRF

Figure 1: BiRF relocation example

cally MJA values, the CRC has to be recalculated, as pro-
posed in [3], and updated as well to prevent error recognition
by the FPGA and allow the download process to continue.
Therefore, the task of the CRC block is to perform recalcu-
lation of the checksum on all bitstream data words changed
by the rest of the BiRF. This is done by means of the parser,
which enables the CRC block immediately before the first
word involved in checksum and activates the correct exit of
the multiplexer to substitute old data. The process used
in the physical implementation of the CRC computation is
based on a Xilinx algorithm proposed in [3]. The FSM also
has to distinguish between single word commands and mul-
tiple word commands, which have more parameters, in order
to select the correct multiplexer line and keep it the same
for the right amount of clock cycles. This is necessary be-
cause the MJA and CRC blocks work on whole commands
and not single words.

6. TESTS AND RESULTS

Upon completion of the modules which compose the BiRF,
the final architecture has been synthesised with Xilinx ISE
7.1 and its behavior has been tested. The results of the
synthesis and testing steps are described in the following
sections along with a comparison with available information
on the REPLICA filter.

6.1 Synthesis data

The BiRF implementation on a Virtex 2 Pro XC2VP30
takes 549 Slices out of 13.696 which corresponds to 4 per cent
of the total available slices, more details are shown in Table
1. The area occupancy of the BiRF filter is relatively small
if compared with the total space available on the board it
allow its subsequent implementation directly in a fixed sec-
tion of the target FPGA eliminating the need for an external
reconfiguration module. Table 1 shows complete occupation
data, in slices and in percentage on three different FPGAs
such as XC2VP7, XC2VP20 and XC2VP30.

The maximum combinatorial path delay reached by BiRF

[[xc2vp7 | xc2vp20 [xc2vp30 |

Slices 549 out of | 549 out of | 549 out of
4928 9280 13696

Slices % 11,1 % 5 % 4 %

Flip Flops 249 out of | 249 out of | 249 out of
9856 18560 27392

Flip Flops % 2,5 % 1,3 % 0,9 %

4 Input LUTSs || 983 out of | 983 out of | 983 out of
9856 18560 27392

4 Input LUTs || 99 % 5,3 % 3,6 %

%

Table 1: Space requirements of the BiRF

is 6,128 ns, allowing a maximum clock frequence at which
the filter can operate of 112,233 MHz. This is more than
acceptable because speed of the dynamical reconfiguration
process does not need to exceed 100 MHz which is less than
the maximum allowed by the filter.

6.2 Validation Results

The BiRF has been tested with several bitstreams given
as input along with specific FPGA parameters and the tar-
get column where the bitstream itself has to be moved. The
bitstreams used for testing were generated using the Caronte
flow [2,9] and include both complete and partial configura-
tions. The filter has been tested at a frequency of 112 MHz,
corresponding to a period of approximately 9 ns that is suf-
ficiently longer than the minimal time required by the BiRF
to correctly process one data word in the worst case. Tests
show that the Parser effectively recognises command words
and parameters given and performs the actions needed to
manipulate the bitstream; also the MJA and CRC blocks
perform the calculations needed to update data word which
become available to the output on the clock cycle that fol-
lows the FAR and CRC commands header.

bitstream size words time | throughput
[KB] [ms] [MB/s]

bsl 548 140.188 1,26 424,73

bs2 1.003 | 256.723 | 2,31 424,02

bs3 1.425 | 362.202 | 3,28 424,27

bs4 4,35 785 0,01 424,80

bsb 65 16.479 0,15 424,59

Table 2: Testing Results

Table 2 shows some experimental data on the relocation
process, performed on various configuration bitstreams taken
as an example. Those bitstreams have different size and de-
scribe the configuration, either partial or complete, of dif-
ferent Xilinx FPGAs: the XC2VP7, the XC2VP20 and the
XC2VP30. Figure 2 represents the time (ms) that is neces-
sary to relocate each of those configuration bitstream.

7. CONCLUDING REMARKS

The Bitstream Relocation Filter allows to manipulate a
configuration bitstream during its downloading on an FPGA;
opening the possibility for great performance improvements
in partial reconfiguration. This happens by deleting the
need to modify the bistream along with performing its nec-
essary calculations on board occupation and functional re-

w
in
[==}

w
[=]
=]

r
i
[}

2,00
180 4

1,00 4

Relocation time [ms]

050 4

0,00 +
bs1 bs2 bs3 bsd bss

Bitstreams

Figure 2: Relocation time of several bitstreams

quirements which become its unique concern when using a
separate relocation filter and due to its small area require-
ments it could be easily implemented directly in the fixed
part of the Caronte architecture. This could completely free
the reconfiguration process from the need of being man-
aged by an external computer, not even partially. Future
improvements concern compatibility extension with other
kinds of FPGAs, reduction of area requirements on board
and, finally, integration of BiRF with other modules that
perform the remaining tasks in the reconfiguration manage-
ment process.

8. REFERENCES

[1] Alberto Donato, Fabrizio Ferrandi, Marco D. Santambrogio,
and Donatella Sciuto. Exploiting partial dynamic
reconfiguration for soc design of complex application on fpga
platforms. In IFIP VLSI-SOC 2005, 2005.

[2] Alberto Donato, Fabrizio Ferrandi, Massimo Redaelli,
Marco D. Santambrogio, and Donatella Sciuto. Caronte: a
complete methodology to implement partially dynamically
self-reconfiguring embedded systems on modern fpga. In
IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM 2005), 2005.

[3] S. Kelem. Virtex series configuration architecture user guide.
Xilint XAPP151, 2003.

[4] M. Porrmann H. Kalte, G. Lee and U. Riickert. Replica: A
bitstream manipulation filter for module relocation in partial
reconfigurable systems. In The 12th Reconfigurable
Architectures Workshop (RAW 2005), 2005.

[5] Xilinx Inc. Two flows for partial reconfiguration: Module
based or small bit manipulations. XAPP290, May 2002.

[6] Edson Horta and John W. Lockwood. Parbit: A tool to
transform bitfiles to implement partial reconfiguration of
field programmable gate arrays (fpgas). Washington
University, Department of Computer Science, Technical
Report WUCS-01-13, July 2001.

[7] Markus Koester, Mario Porrmann, and Ulrich Riickert.
Placement-oriented modeling of partially reconfigurable
architectures. In The 12th Reconfigurable Architectures
Workshop (RAW 2005), 2005.

[8] U. Ruckert H. Kalte, M. Porrmann.
System-on-programmable-chip approach enabling online
fine-grained 1d-placement. In 18th International Parallel
and Distributed Processing Symposium (IPDPS’04), 2004.

[9] Fabrizio Ferrandi, Marco D. Santambrogio, and Donatella
Sciuto. A design methodology for dynamic reconfiguration:
The caronte architecture. In The 12th Reconfigurable
Architectures Workshop (RAW 2005), 2005.

