
A Design Methodology for Dynamic Reconfiguration:
The Caronte Architecture.

Fabrizio Ferrandi
Politecnico di Milano

Milano, Italy
ferrandi@elet.polimi.it

Marco D. Santambrogio
Politecnico di Milano

Milano, Italy
santambr@elet.polimi.it

Donatella Sciuto
Politecnico di Milano

Milano, Italy
sciuto@elet.polimi.it

ABSTRACT
The most common reconfigurable devices today are Field Program-
mable Gate Arrays, FPGAs. Aim of this paper is to propose a de-
sign methodology for dynamically reconfigurable systems provid-
ing a dynamic architecture that, thanks to the processor embedded
in the FPGA, is able to dynamically change the design implemen-
tation to meet and satisfy all the requirements of the system im-
plementation. The proposed methodology provides a solution for
the partial dynamic reconfiguration of an embedded system, us-
ing a common FPGA and development board, without any specific
or dedicated device. This paper describes the Caronte architec-
ture used to implement the proposed approach, showing how it is
possible to obtain a reconfigurable system just using tools that are
already widely used to design FPGA-based systems.

1. INTRODUCTION
Nowadays many emerging applications in communication, com-

puting and consumer electronics demand that their functionality
stays flexible after the system has been manufactured. Such a flex-
ibility is required in order to cope with changing user requirements,
improvements in system features, changing protocol and data-coding
standards, demands for support of a variety of different user appli-
cations, etc. Most applications runnig on FPGA-based systems are
implemented using a single configuration per FPGA as [4]. This
means that the functionality of the circuit does not change while
the application is running. Such an application can be referred to as
being Compile-Time Reconfigurable, CTR, because the entire con-
figuration is determined at the compile-time and does not change
throughout system operation. Another implementation strategy is
to implement an application with multiple configurations per FPGA
[7], [5], [2]. In this scenario the application is divided into time-
exclusive operations that need not, or cannot, operate concurrently.
Each operation is implemented as a distinct configuration which
can be donwloaded into the FPGA as necessary at run-time during
application operation. This approach is referred to as Run-Time
Reconfiguration, RTR or Dynamic Reconfiguration. Dynamic Re-
configuration can be achieved into two different ways: dynamic ex-
ternal reconfiguration and embedded reconfiguration. Dynamic ex-
ternal reconfiguration implies that an active array may be partially
reconfigured by an external device such as a Personal Computer,
while ensuring the correct operation of those active circuits that are
not being changed. Embedded reconfiguration extends the concept
of dynamic reconfigurability assuming that specific circuits on the
array are used to control the reconfiguration of other parts of the
FPGA. Clearly the integrity of the control circuits must be guar-
anteed during reconfiguration, so by definition embedded recon-
figuration is a specialized form of dynamic reconfiguration [9]. A
new class of cores called run-time parameterizable (RTP) has been

introduced in [3]. RTP cores allow a single core to be computed
and customized at run-time. For example, an adder core can be
produced, and then parameterized at run-time for different operand
widths. An innovation of this approach consists in considering the
RTP cores as a specific example of a reconfigurable core, placed on
the programmable device in a dynamic manner to respond to the
changing computational demands of the application. The problem
of this methodology is that the RTP are targeted only to a single
device family and there is no information about the communication
channel between RTP and about how they solve the physical recon-
figuration problem.
In [1] the hardware subsystem of the reconfiguration control infras-
tructure sits on the on-chip peripheral bus, OPB. The microproces-
sor, PowerPC or MicroBlaze, communicates with this peripheral
over the OPB bus. The hardware peripheral is designed to provide
a lightweight solution to reconfiguration. In order to do this it em-
ploys a read / modify / write strategy. The program installed on the
processor requests a specific frame, then the control logic of the pe-
ripheral uses the ICAP to do a readback and loads the configuration
data into a dual-port block RAM. When the read-back is complete,
the program directly modifies the configuration data stored in the
BRAM. Finally the system writes the modified configuration data
back to the device.
In this scenario the proposed methodology focuses its attention on
just a reconfigurable device, a single FPGA, trying to figure out
how this device can be used to implement an embedded dynamic
reconfigurable system just without any additional cost due to a use
of a dedicated device to program it. The idea is to use EDK, Em-
bedded Development Kit, produced by the Xilinx Inc. as the start-
ing point of the entire methodology. One of the most important
feature implemented in EDK is the opportunity to develop both
the software and the hardware part of the design in just one tool
focusing the attention on the entire implementation of the desired
system. To implement this characteristic, EDK is designed to pro-
vide designers with a rich set of design tools, such as XPS, Xilinx
Platform Studio, gcc, XST, Xilinx synthesizer, and a wide selec-
tion of standard peripherals required to build embedded processor
systems using the MicroBlaze processor or/and the IBM PowerPC
CPU, [10].

2. THE PROPOSED METHODOLOGY
This section shows how to implement a dynamic reconfigurable

system onto a common FPGA, using a development tool such as
EDK, Embedded Development Kit, produced by Xilinx Inc., just
combining different design flows into a new design methodology.
Aims of the proposed methodology is to introduce dynamism also
in the hardware part of the system without loosing or increasing
the overall implementation time, and without changing the devel-



opment tool and implementing the dynamic system onto a common
FPGA, [8]. The proposed methodology is depicted in Figure 1 and
in particular it shows how it has been inserted the Caronte flow into
the standard FPGA flow. As shown in Figure 1, the Caronte Flow

Figure 1: Reconfiguration Design Methodology Flow.

accept as input the result of a previous partitioning and analysis
phase, [8]. Both the FPGA and the initial description of the system
have to be partitioned into several parts to provide the correct start-
ing point to find out a dynamic reconfigurable design for the desire
system description. This first phase identifies all the processing ele-
ment of the description that will be mapped onto the corresponding
part of the FPGA. These elements, in order to be downloaded onto
an FPGA, have be transformed into a set of reconfiguration bit-
stream by the Caronte Flow. To achieve this goal the Caronte Flow
is mainly composed by three phases:

HW-SSP Phase The HardWare Static System Photo Phase iden-
tifies a set of EDK system descriptions that are going to be
reconfigured;

Design Phase This phase aims at creating all the information needed
to compute all the bitstream to physically implement the em-
bedded reconfiguration of the FPGA. This phase solves three
different problems:

• Identify the structure of each reconfigurable block pro-
viding a specific implementation for each of them. This
phase is based on the Xilinx Modula Based Design ap-
proach;

• Identify, using the Floorplanner tool provided in ISE
tool chain, the area of each reconfigurable component
of the system;

• Solve the communication problem between reconfig-
urable modules, by introducing Bus Macros that allow
signals to cross over a partial reconfiguration boundary.

Bitstream Creation Phases This phase creates all the bitstreams
needed to implement the system description onto an FPGA
through the dynamic embedded reconfiguration.

2.1 HW-SSP Phase
The input of the Caronte Flow is composed by a special set of

EDK Cores, the BlackBox elements. Those are used by the HW–
SSP phase to create all the HW Static System Photos. An HW–SSP

is an EDK system based on the Caronte architecture. This architec-
ture contains a fixed part and several reconfigurable blocks, named
BlackBoxes. The application moves from an HW–SSP to another

by reconfiguring the BlackBoxes and by leaving the fixed part un-
changed. The idea is to consider the system in time as a sequence
of static photos whre all the HW–SSPs share the static part of the
system.
Finally, the EDK output is used as input for the next phase.

2.2 Design Phase
The idea is to implement a specific environment oriented to the

reconfiguration that, starting from a system description provided by
the use of EDK, uses the Modular Based Design, MBD, approach
to define all the bitstream for the final implementation of the sys-
tem. According to this scenario the proposed approach provide to
the designer a methodology that strongly decrease the time to mar-
ket of the final implementation of the system. In order to obtain
all the HW-SSPs needed by the MBD the designer, or the auto-
matic version of the Caronte flow, has no reason to use the complete
EDK implementation chain, but just a little part of it. The produced
VHDL descriptions will be pseudo automatically changed accord-
ing to the fact that the system has a dynamic nature. The main
changes to the system descriptions deal with the communication
channel between modules. In order to allow modules to commu-
nicate with each others in a dynamic system, a special bus, the
BUS Macro, has to be introduced into the design description. Each
time partial reconfiguration is performed, the bus macro is used to
establish unchanging routing channels between modules, guaran-
teeing correct connections. Once that all the description have been
adapted to the embedded dynamic reconfiguration nature of the fi-
nal system, the problem that still remain to be solved is that the au-
tomatic synthesis provided by EDK does not care about placing all
the parts of the same component in the same area. In order to cope
this problem the Floorplanner, a tool contained in the ISE Xilinx
package, could be use. The Floorplanner provides a simple way
to constrain the placement of every component of a project onto
a specific area of the physical architecture. The reason why area
constraints are so important for the partial reconfiguration is that
partial reconfiguration is nothing more than a configuration of the
FPGA with a bitstream which contains configuration data only for
a specific part of the FPGA. These bitstreams are called partial bit-
streams according to the fact that they are computed as the logical
difference between two complete configuration bitstreams for the
target FPGA. This means that without constraining the components
placement, it is impossible to guarantee that the partial bitstream
between two configurations will affects only the configuration of
the desired area.

3. THE CARONTE ARCHITECTURE
This section aims at showing the architecture adopted by the pro-

posed methodology for the embedded partial dynamic reconfigu-
ration: Caronte. This architecture is entirely implemented in the
FPGA device. It is constituted by several elements such as a proces-
sor, memories, a set of reconfigurable devices and a reconfiguring
device. Figure 2 presents the EDK Caronte architecture view that
has been implemented on a VirtexII-Pro FPGA. The core of this
architecture is the PPC405 processor which implements both the
controller and the scheduler of the given system implementation.
A part from the processor there are other components involved in
the reconfiguration action. As shown in Figure 2 it is possible to
list at least four classes of other components:

• ICAP, used to read/write a configuration from/to the BRAM
to/from a specific BlackBox;

• Memory, used to store all the partial bitstream data informa-
tion;



Figure 2: Caronte Architecture Overview

• BlackBoxes, the reconfigurable components;

• Interrupt Controller, used by the PPC405 processor and
the BlackBoxes to dialog one to each other.

3.1 Processing Element Mapping: BlackBox
Definition

A BlackBox is a fixed known portion of FPGA that can be re-
configured completely without interfering with the execution of the
remaining part of the FPGA. Therefore a BlackBox can be consid-
ered as a shell for processing elements. This shell provides also the
communication channel interface between the node and the system.
This interface allows the node to send data directly on the commu-
nication channel or to temporally store a fixed number of data in
its communication spooler, which is a sort of data repository used
during the reconfiguration action. A BlackBox can be seen as an
EDK component although this is a simplified way of thinking of
a BlackBox. A BlackBox is not a static component mapped onto
the FPGA, as any classical EDK component. A BlackBox can be
considered as a virtual shell used to contain different processing el-
ements of the system description that need to be mapped onto the
FPGA. In order to be able to implement a partial reconfiguration
of a portion of the FPGA it is important to know which is the por-
tion that has to be reconfigured. The Xilinx Platform Studio Tool
of EDK, used to create FPGAs architectures, offers an automatic
synthesis engine that generates a real project implementation by
arranging each logic unit in a standard way. A BlackBox provides
the interfaces needed by the VHDL description of a processing el-
ements to dialog with all the other components of the architecture,
such as the CoreConnect bus, the processor, the interrupt controller
and the other blackboxes. A BlackBox is shown in Figure 3. What
is going to really change during reconfiguration is the Processing
Element node logic, in fact the communication interface and IP
Interconnect (IPIC) between the node logic and the interface re-
main always the same. This means that a BlackBox is constituted
by two VHDL, Verilog or EDIF files, the first one containing the
architecture-dependent logic interface and the second one the pro-
cessing element description.

3.2 The Caronte Software Implementation
In a previous implementation, the Caronte software has been im-

plemented as a standalone system while now it has been based
on a Linux operating system. Caronte implements an architecture
where, at the right time, each processing element can be mapped,
thanks to the controller, according to the placement information
The time of the reconfiguration has been computed statically, but it

Figure 3: A BlackBox overview

can be modified due to the actual execution or external environment
inputs. This is the reason why the PPC405 runs also a dynamic
scheduler, which takes into consideration the runtime implemen-
tation of the system description. The scheduler, according to the
information provided by the controller, updates the processing ele-
ment time information and computes a new schedule on the graph
by following a List-based approach, in order to identify the new
critical path and reorder accordingly the processing elements.
Caronte sees each processing element as a component that has to
be mapped onto a specific FPGA area. According to this scenario
the core of the Caronte embedded reconfigurable architecture can
be considered the PPC405 processor which implements both the
controller and the scheduler of the given system implementation.
The controller stands in a time watching state, controlling that the
running time of each BlackBox meets the time statically computed
until a BlackBox ends its execution or the running time of a generic
y BlackBox exceeds its statically predefined deadline. In the sec-
ond case the controller informs the scheduler that the run time of
the y BlackBox is greater than the estimated one by activating the
scheduler to compute the new critical and a new feasible solu-
tion. After informing the scheduler the controller returns in its time
watching state, waiting for a new event. In the first case, the cor-
rect end of a BlackBox execution, implies a reconfigurable action
to be performed. At the end of its execution the BlackBox informs
the controller of this event. At this point the reconfiguration action
begins. The controller knows which is the next node that has to
be mapped on this BlackBox and downloads from the memory to
the BRAM the correct configuration bistream. At the same time
the controller, the PPC, informs all the blackboxes, BBs, which can
be disturbed by the reconfiguration action to activate their spooler
communication system. At this point the PPC405 allows the ICAP
to reconfigure the BlackBox with the new configuration bitstream.
The ICAP module is the main module that performs the in-circuit
reconfiguration, and it is available only in the Virtex-II, or greater,
series devices. The ICAP block is located in the lower right hand
corner of the FPGA, this information is very important in the mod-
ular based design approach, in fact we implement a fix shell for the
ICAP connected to the rest of the system through the presences of
the BUS Macro. It is used to access the device configuration regis-
ters as well as to transfer configuration data using the SelectMAP
protocol. Finally, when the new BlackBox has been mapped and
it starts its computation, the ICAP informs the processor that the
reconfiguration action ended with success. After that the controller
enables all the communications interrupted by the reconfiguration.



4. TEST AND RESULTS
The Caronte flow has been applied to the MD5 algorithm to test

the Caronte architectural features, like the possibility to store the
reconfiguration data on the board without external resources. The
MD5 algorithm takes as input a message of arbitrary lenght and
produces as output a 128-bit fingerprint or message digest of the in-
put. It is conjectured that it is computationally infeasible to produce
two messages having the same digest, or to produce any message
having a given prespecified target message digest. The MD5 algo-
rithm is intended for digital signature applications, where a large
file must be compressed in a secure manner before being encrypted
with a private key under a public-key cryptosystem such as RSA.
In order to correctly test the Caronte architecture and the embed-
ded reconfiguration, we apply the first phase of analysis and par-
titioning on the proposed algorithm and we obtain a first HW/SW
codesign solution of the entire system. After that previous step we
iterate the partitioning phase onto the hardware description of the
system to obtain all the processing element needed by the Caronte
flow as input. The hardware implementation of the system has been
divided into 5 processing elements, modeled as BlackBoxes, and
therefore it ispossible to define all the HW-SSPs for the MD5 al-
gorithm (see Table 2). According to this scenario the Caronte ar-
chitecture choosen for the MD5 application is composed by two
BlackBoxes, BB1 and BB2, and by the Caronte Core, composed
by the processor, the memory, the ICAP module and all the others
static part previously described. The access time to the memory,

Table 1: HW-SSP Description
HW-SSP Fix Module BB1 BB2

0 Emply Emply Emply
1 Caronte Core PE-A PE-B
2 Caronte Core PE-C PE-B
3 Caronte Core PE-C PE-D
4 Caronte Core PE-E PE-D
5 Caronte Core PE-E PE-F
6 Caronte Core Empty PE-F

where all the difference bitstream are stored, has been obtained via
a timing test: writing 32 bits of data takes 0.135µs, while reading
the same amount of data requires 0.020µs. Without considering the
first configuration bitstream, which implies a complete configura-
tion of the FPGA, the comparison between the external reconfigu-
ration and the embedded one are shown in Table 2. Although the

Table 2: Embedded Vs External Reconfig.
Action External Rec. Embedded Rec.

Rec. Time C block 14.558s 2.159ms
Rec. Time D block 14.597s 2.300ms
Rec. Time E block 14.560s 2.229ms
Rec. Time F block 15.482s 2.932ms

embedded reconfiguration is faster than the external one, it still re-
mains too slow if compared to the block execution times, 431.2µs
for each block, from now on considered as BlackBox. Due to this
observation we decide to change our execution model to be able
to justify the reconfiguration approach using a model similar to the
one proposed in [6]. The idea is to iterate the execution of each
block on a sufficient amount of data to enlarge its computation time
until the execution time is bigger than the one needed to reconfig-
ure the BlackBox. The number of iteration required by a generic

processing element that makes its computation on a set of data of a
fix-dimension each timeas beeb computed as greater than 8

5. CONCLUSIONS
Preliminary results show that the Caronte methodology, imple-

menting a module-based oriented system approach based on an
EDK system description, provides a low cost approach to the dy-
namic reconfiguration problem. Some improvements can be done
introducing an automated version of the area-constraints procedure
and an automated binding between the bus interface and the core
component VHDL files to define the corresponding BlackBox. It
would be also interesting to extend the framework to implement a
dynamic reconfigurable soft processor.

6. REFERENCES
[1] B. Blodget, S. McMillan, and P. Lysaght. A lightweight

approach for embedded reconfiguration of fpgas. 1991.
[2] P. French and R.W.Taylor. A self–reconfiguring processor.

pages 50–59. Proceedings of IEEE Workshop on FPGAs for
Custom Computing Machine, D.A. Buell and K.L. Pocek,
1993.

[3] S. Guccione and D.Levi. Run–time parameterizable cores.
pages 215–222. IEEE Symposium on Filed Programmable
Logic and Application, 1999.

[4] D. T. Hoang. Searching genetic databases on splash2. pages
185–191. Proceedings of IEEE Workshop on FPGAs for
Custom Computing Machines, D.A. Buell and K.L. Pocek,
1993.

[5] P. Lysaught, J. Stockwood, J. Law, and D. Girma. Artificial
neural network implementation on a fine–grainde FPGA. R.
Hartenstein and M.Z. Servit, 1994.

[6] R. Maestra, F. Kurdahi, M. Fernandez, R. Hermida,
N. Bagherzadeh, and H. Singh. A framework for
reconfigurable computing: Task scheduling and context
management. IEEE Transaction on Very Large Scale
Integration (VLSI) Systems, 9(6):858–873, December 2001.

[7] D. Ross, O. Vellacott, and M. Turner. An fpga–based
hardware accelerator for image processing. pages 299–306.
More FPGAs: Proceedings of the 1993 International
workshop on field–programmable logic and applications, W.
Moore and W. Luk, 1993.

[8] M. D. Santambrogio. A Methodology for Dynamic
Reconfigurability in Embedded System Design. Graduate
Thesis Politecnico di Milano, 2004.

[9] S. Tapp. Configuration quick start guidelines. XAPP151, July
2003.

[10] Xilinx Inc. Embedded Development Kit EDK 6.2i. Xilinx
Inc., 2004.


